CAUTIONARY STATEMENT

This presentation contains forward-looking statements concerning Advanced Micro Devices, Inc. (AMD) including, but not limited to, the features, functionality, availability, timing, expectations and expected benefits of AMD’s current and future products, including 7nm “Zen 2” EPYC™ processors; expected TAM; EPYC™ server platform momentum; AMD’s long term datacenter commitment and roadmap; and AMD’s roadmap execution, which are made pursuant to the Safe Harbor provisions of the Private Securities Litigation Reform Act of 1995.

Forward-looking statements are commonly identified by words such as “would,” “may,” “expects,” “believes,” “plans,” “intends,” “projects” and other terms with similar meaning. Investors are cautioned that the forward-looking statements in this presentation are based on current beliefs, assumptions and expectations, speak only as of the date of this presentation and involve risks and uncertainties that could cause actual results to differ materially from current expectations. Such statements are subject to certain known and unknown risks and uncertainties, many of which are difficult to predict and generally beyond AMD’s control, that could cause actual results and other future events to differ materially from those expressed in, or implied or projected by, the forward-looking information and statements. Investors are urged to review in detail the risks and uncertainties in AMD’s Securities and Exchange Commission filings, including but not limited to AMD’s Quarterly Report on Form 10-Q for the quarter ended March 31, 2018.
EPYC™ PROCESSOR
ONE YEAR ANNIVERSARY

Forrest Norrod
SVP and GM, Datacenter & Embedded Solutions

June 2018
COMPETITION RETURNS TO THE DATACENTER
LARGE AND GROWING MARKETS
$75B+ TAM BY 2020

- PC: $30B
- Graphics: $10B
- Datacenter: $21B
- Automotive & Inference: $10B
- MI Learning: $11B
AMD’s Commitment To High Performance

✓ Leadership Multi-thread Performance
✓ Competitive 1P Performance
✓ Best-in-class Power Efficiency
✓ 52% Higher Instructions-Per-Clock
Infinity Fabric is Architected to Efficiently Extend Beyond the SoC

One Protocol: On Die, Die-to-Die, and Socket-to-Socket

Flexible Multi-Die Solutions
MONOLITHIC VS. MULTIChip
MOVING TO A MULTI-DIE APPROACH HAS MANY BENEFITS

✓ More silicon possible in a socket = more performance and features
✓ Multi-die scalability
✓ Yield improvement
✓ Manufacturing flexibility

HYPOTHETICAL MONOLITHIC

AMD EPYC MULTIChip MODULE
EPYC™ CPU
LEADERSHIP PERFORMANCE

32 24, 16, 8 cores per socket

INDUSTRY-LEADING CORE COUNT

128 PCIe Gen 3 lanes in a single CPU

LARGEST I/O CAPACITY

8 memory channels per CPU

UNLOCK PERFORMANCE

2TB RAM per socket

LARGEST MEMORY CAPACITY

See Endnotes: NAP-42; NAP-43; NAP-44; NAP-56
EPYC™ PERFORMANCE LEADERSHIP

<table>
<thead>
<tr>
<th>EPYC</th>
<th>7601</th>
<th>2P Floating Point Performance for High-Performance Computing</th>
<th>SPECrate®2017_fp_peak</th>
<th>~3.5X Performance / $</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel Xeon Platinum 8180M</td>
<td>279</td>
<td>250</td>
<td>SPECrate®2017_fp_peak</td>
<td>~3.5X Performance / $</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EPYC</th>
<th>7601</th>
<th>2P Integer Performance for SDS, Cloud, Virtualized IT</th>
<th>SPECrate®2017_int_peak</th>
<th>~3.1X Performance / $</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel Xeon Platinum 8180M</td>
<td>310</td>
<td>309</td>
<td>SPECrate®2017_int_peak</td>
<td>~3.1X Performance / $</td>
</tr>
</tbody>
</table>
MORE PERFORMANCE
AT EVERY COMPETITIVE PRICE POINT

2 EPYC™ VS. 2 XEON™ SKYLAKE

56% Better Performance*
44% Better Performance*
43% Better Performance*
26% Better Performance*
15% Better Performance*

Xeon 4114 EPYC 7281
$500 - $800

Xeon 4116 EPYC 7301
$900 - $1,000

Xeon 5118 EPYC 7351
$1,000 - $1,800

Xeon 6130 EPYC 7401
$1,800 - $2,500

Xeon 8160 EPYC 7601
> $4,000

See Endnotes: NAP-87; NAP-88; NAP-89; NAP-90; NAP-91; Pricing ranges based on Intel recommended customer pricing per ark.intel.com Oct 2017; AMD 1Ku pricing June 2017

SPECint®_rate2017 (2P) (estimated)
NO COMPROMISE
ONE SOCKET

Right-Size Systems to Workloads without Compromise

I/O Expansion | Memory Bandwidth | Memory Capacity

LEADERSHIP
TWO SOCKET

High-Performance, Balanced Architecture

More Cores | More Memory Bandwidth | More I/O
NO-COMPROMISE ENTERPRISE-CLASS 1 SOCKET
A BETTER ALTERNATIVE FOR MOST CUSTOMERS

1 EPYC™ VS. 2 XEON™ SKYLAKE

<table>
<thead>
<tr>
<th>Pricing Range</th>
<th>EPYC Processor</th>
<th>Intel Processor</th>
<th>Performance Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>> $2,000</td>
<td>EPYC 7551P</td>
<td>2 x Xeon 5118</td>
<td>8% Better Performance*</td>
</tr>
<tr>
<td>$1,000 - $1,500</td>
<td>EPYC 7401P</td>
<td>2 x Xeon 4114</td>
<td>14% Better Performance*</td>
</tr>
<tr>
<td>$700 - $900</td>
<td>EPYC 7351P</td>
<td>2 x Xeon 4108</td>
<td>30% Better Performance*</td>
</tr>
<tr>
<td>$600 - $700</td>
<td>EPYC 7281</td>
<td>2 x Xeon 3106</td>
<td>65% Better Performance*</td>
</tr>
</tbody>
</table>

*See Endnotes: NAP-62; NAP-63 NAP-64; NAP-65. Results may vary. Pricing ranges based on Intel recommended customer pricing per ark.intel.com Oct 2017; AMD 1Ku pricing June 2017.

SPECint®_rate2006 (2P) (estimated)
LEADERSHIP WORKLOADS

High Performance Compute
Cloud, Hyperscale, And Virtualization
Machine Learning
Big Data And Analytics
Software-Defined Storage
EPYC™ MOMENTUM
MORE THAN 50 SERVER PLATFORMS
INTRODUCED AND RAMPING

OEM/ODM
- ASUS
- GIGABYTE
- HP Enterprise
- Sugon
- Lenovo
- TYAN
- wistron
- SUPERMICRO
- Inventec
- H3C

SYSTEM INTEGRATOR
- CIARA
- AMAX
- CRAY
- KOI
- SILICON MECHANICS
- INTERNATIONAL COMPUTER CONCEPTS
- atipac technologies
- ATX
- BOXX
- EQUUS
- CLIPAX
- ASA
- Rosen
- packet

CLOUD
- Microsoft Azure
- Baidu Cloud
- Dropbox
- HIVELOCITY
- Yahoo! Japan
- packet
TENCENT SA1 CLOUD SERVICE
POWERED BY EPYC™

30% Lower Cost Per VM with Outstanding Performance for 3D Rendering, Genetic Modeling and E-Commerce

NOW AVAILABLE
HPE PROLIANT DL325 GEN 10

FIRST AMD EPYC™

1P PROLIANT SERVER

Up to 25% Lower Cost Than the Leading Two-Socket Competitor For Virtualization

ANNOUNCED JUNE 2018
CISCO

LATEST CUSTOMER TO ADOPT EPYC™ HIGHEST DENSITY UCS SOLUTION

128% More Cores, 50% More Servers, And 20% More Storage Per Rack

ANNOUNCED JUNE 2018
AMD LONG TERM DATACENTER COMMITMENT

2017

“Naples”

“ZEN”
14nm

“ZEN 2”
7nm
SAMPLING 2H’18

2020

“Rome”

“ZEN 3”
7nm+

“Milan”

Continuous Innovation

Performance Leadership

Roadmap subject to change.
LEADERSHIP ROADMAP EXECUTION

7NM “ZEN 2” PROCESSORS

Silicon in Labs
NOW

Sampling
2H18

Launch
2019

Dates subject to change.
HIGH-PERFORMANCE TECHNOLOGIES

Workload Focus Customer Centered Reliable Execution
Generational IPC uplift for the "Zen" architecture vs. "Piledriver" architecture is +52% as measured with Cinebench R15 (Zen) and also +64% with an estimated SPECint_base2006 score compiled with GCC 4.6 -C2 at a fixed 3.4GHz. Generational IPC uplift for the "Zen" architecture vs. "Excavator" architecture is +64% as measured with Cinebench R15, and also +64% with an estimated SPECint_base2006 score compiled with GCC 4.6 -C2 at a fixed 3.4GHz. System configs: AMD reference motherboard(s), AMD Radeon RX 590X GPU, 8GB DDR4 2667 (Zen)/8GB DDR3 2133 ("Excavator")/8GB DDR3-1866 ("Piledriver"), Ubuntu Linux 16.x (SPECint_base2006 estimate) and Windows® 10 x64 RS1 (Cinebench R15). SPECint_base2006 estimates: "Zen" vs. "Piledriver" (31.5 vs. 20.7 | +52%), "Zen" vs. "Excavator" (31.5 vs. 19.2 | +64%). Cinebench R15 11 scores: "Zen" vs. "Piledriver" (139 vs. 79 both at 3.4GHz | +76%), "Zen" vs. "Excavator" (160 vs. 97.5 both at 4.0GHz | +64%).

A single AMD EPYC 7601 processor offers up to 21T/processor (x 2 = 4TB), versus the Intel® Xeon® Platinum 8180 processor at 768GB/processor (x 2 = 1.54TB). NAP-44

AMD EPYC™ processor supports up to 128 PCIe® Gen 3 I/O lanes (in both 1 and 2-socket configuration), versus the Intel® Xeon® SP Series processor supporting a maximum of 48 lanes PCIe® Gen 3 per CPU, plus 20 lanes in the chipset (max of 68 lanes on 1 socket and 116 lanes on 2 socket). NAP-56

AMD EPYC™ processor supports up to 128 PCIe® Gen 3 I/O lanes (in both 1 and 2-socket configuration), versus the Intel® Xeon® SP Series processor supporting a maximum of 48 lanes PCIe® Gen 3 per CPU, plus 20 lanes in the chipset (max of 68 lanes on 1 socket and 116 lanes on 2 socket). NAP-56

Slide 8:
NAP-43
AMD EPYC™ 7601 processor supports up to 8 channels of DDR4-2667, versus the Intel® Xeon® Platinum 8180 processor at 6 channels of DDR4-2667. NAP-42

NAP-43
AMD EPYC 7601 processor includes up to 32 CPU cores versus the Intel® Xeon® Platinum 8180 processor with 28 CPU cores. NAP-43

NAP-44
A single AMD EPYC™ 7601 processor offers up to 21T/processor (x 2 = 4TB), versus a single Intel Xeon Platinum 8180 processor at 768GB/processor (x 2 = 1.54TB). NAP-44

NAP-56
AMD EPYC™ processor supports up to 128 PCIe® Gen 3 I/O lanes (in both 1 and 2-socket configuration), versus the Intel® Xeon® SP Series processor supporting a maximum of 48 lanes PCIe® Gen 3 per CPU, plus 20 lanes in the chipset (max of 68 lanes on 1 socket and 116 lanes on 2 socket). NAP-56

Slide 9:
NAP-98
Based on SPECrate®2017_int_peak results published on www.spec.org as of April 2018. AMD-based system scored 310 on a Supermicro A+ Server 2123BT-HNCOR configured with 2 x AMD EPYC 7601 SOC's ($4200 each at AMD 1ku pricing), 1TB memory (16 x 64GB DDR4 2666MHz), SUSE 12 SP2, Supermicro BIOS 1.0b, using the AOCC 1.0 compiler. Intel-based system scored 309 on a Cisco UCS C220 M5 server configured with 2 x 8180M CPU's ($13,011 each per ark.intel.com), 384GB memory (24 x 16GB 2R DDR4 2666MHz), SLES 12 SP2, BIOS vs 2.1d, using the ICC 18.0.0.128 compiler. NAP-99

Based on SPECrate®2017_fp_peak results published on www.spec.org as of April 2018. AMD-based system scored 279 on a Supermicro A+ Server 4022S-TRT configured with 2 x AMD EPYC 7601 SOC's ($5200 each at AMD 1ku pricing), 1TB memory (16 x 64GB DDR4 2666MHz), SUSE 12 SP2, Supermicro BIOS 1.0b, using the AOCC 1.0 compiler. Intel-based system scored 450 on a Cisco UCS C220 M5 server configured with 2 x 8180M CPU's ($15,011 each per ark.intel.com), 384GB memory (24 x 16GB 2R DDR4 2666MHz), SLES 12 SP2, BIOS vs 2.1d, using the ICC 18.0.0.128 compiler. NAP-99

Slide 10:
Price ranges based on Intel recommended customer pricing per ark.intel.com, October 2017. AMD 1ku pricing June 2017. Results may vary.

Estimates based on SPECrate®2017_int_base using the GCC-0.4.4 compiler. AMD-based system scored 196 in tests conducted in AMD labs using an "Ethanol" reference platform configured with 2 x AMD EPYC 7601 SOC's, 512GB memory (16 x 32GB 2R DDR4 2666MHz), Ubuntu 17.04, BIOS 1002E, Intel-based Supermicro SYS-1029U-TRTP server scored 169.8 in tests conducted in AMD labs configured with 2 x Xeon 8160 CPU's, 768GB memory (2 x 32GB 2R DDR4 2666MHz), SLES 12 SP3 4.4.92-6.18 default kernel, BIOS set to Extreme performance setting. NAP-88

Estimates based on SPECrate®2017_int_base using the GCC-0.4.4 compiler. AMD-based system scored 149 in tests conducted in AMD labs using an "Ethanol" reference platform configured with 2 x AMD EPYC 7441 SOC's, 512GB memory (16 x 32GB 2R DDR4 2666MHz), Ubuntu 17.04, BIOS 1002E, Intel-based Supermicro SYS-1029U-TRTP server scored 118.1 in tests conducted in AMD labs configured with 2 x Xeon 6130 CPU's, 768GB memory (24 x 32GB 2R DDR4 2666MHz), SLES 12 SP3 4.4.92-6.18 default kernel, BIOS set to Extreme performance setting. NAP-88

Estimates based on SPECrate®2017_int_base using the GCC-0.4.4 compiler. AMD-based system scored 123 in tests conducted in AMD labs using an "Ethanol" reference platform configured with 2 x AMD EPYC 7315 SOC's, 512GB memory (16 x 32GB 2R DDR4 2666MHz), Ubuntu 17.04, BIOS 1002E, Intel-based Supermicro SYS-1029U-TRTP server scored 86.2 in tests conducted in AMD labs configured with 2 x Xeon 5118 CPU's, 768GB memory (2 x 32GB 2R DDR4 2666MHz running at 2400), SLES 12 SP3 4.4.92-6.18 default kernel, BIOS set to default performance setting. NAP-88

Estimates based on SPECrate®2017_int_base using the GCC-0.4.4 compiler. AMD-based system scored 113 in tests conducted in AMD labs using an "Ethanol" reference platform configured with 2 x AMD EPYC 7315 SOC's, 512GB memory (16 x 32GB 2R DDR4 2666MHz), Ubuntu 17.04, BIOS 1002E, Intel-based Supermicro SYS-1029U-TRTP server scored 78.7 in tests conducted in AMD labs configured with 2 x Xeon 4116 CPU's, 768GB memory (24 x 32GB 2R DDR4 2666MHz running at 2400), SLES 12 SP3 4.4.92-6.18 default kernel, BIOS set to default performance setting. NAP-88

Estimates based on SPECrate®_rate_base2017 using the GCC-0.4.4 compiler. AMD-based system scored 106 in tests conducted in AMD labs using an "Ethanol" reference platform configured with 2 x AMD EPYC 7315 SOC's, 512GB memory (16 x 32GB 2R DDR4 2666MHz), Ubuntu 17.04, BIOS 1002E, Intel-based Supermicro SYS-1029U-TRTP server scored 97.6 in tests conducted in AMD labs configured with 2 x Xeon 4114 CPU's, 768GB memory (24 x 32GB 2R DDR4 2666MHz running at 2400), SLES 12 SP3 4.4.92-6.18 default kernel, BIOS set to default settings. NAP-88

ENDNOTES
NAP-42
AMD EPYC™ 7601 processor supports up to 8 channels of DDR4-2667, versus the Xeon Platinum 8180 processor at 6 channels of DDR4-2667.

NAP-43
AMD EPYC 7601 processor includes up to 32 CPU cores versus the Xeon Platinum 8180 processor with 28 CPU cores.

NAP-56
AMD EPYC™ processor supports up to 128 PCIe® Gen 3 I/O lanes (in both 1 and 2-socket configuration), versus the Intel® Xeon® SP Series processor supporting a maximum of 48 lanes PCIe® Gen 3 per CPU, plus 20 lanes in the chipset (max of 68 lanes on 1 socket and 116 lanes on 2 socket).

Slide 12:
Estimates based on SPECrate® 2017_int_base using the GCC-02 v7.2 compiler. AMD-based system scored 93 in tests conducted in AMD labs using an "Ethanol" reference platform configured with 1 x AMD EPYC 7551P SOC ($2100 each at AMD 1ku pricing), 768GB memory (24 x 32GB 2R DDR4 2666MHz running at 2400), SLES 12 SP3 4.92-6.18 default kernel, BIOS set to Extreme performance setting. SPEC and SpecCrane are registered trademarks of the Standard Performance Evaluation Corporation. See www.spec.org. NAP-62

Estimates based on SPECrate® 2017_int_base using the GCC-02 v7.2 compiler. AMD-based system scored 86.2 in tests conducted in AMD labs configured with 2 x Xeon 5118 CPU's (2 x $1273 each per ark.intel.com), 768GB memory (24 x 32GB 2R DDR4 2666MHz running at 2400), SLES 12 SP3 4.92-6.18 default kernel, BIOS set to default settings. SPEC and SpecCrane are registered trademarks of the Standard Performance Evaluation Corporation. See www.spec.org. NAP-63

Estimates based on SPECrate® 2017_int_base using the GCC-02 v7.2 compiler. AMD-based system scored 67.6 in tests conducted in AMD labs configured with 2 x Xeon 4114 CPU's (2 x $694 each per ark.intel.com), 768GB memory (24 x 32GB 2R DDR4 2666MHz running at 2400), SLES 12 SP3 4.92-6.18 default kernel, BIOS set to default settings. SPEC and SpecCrane are registered trademarks of the Standard Performance Evaluation Corporation. See www.spec.org. NAP-64

Estimates based on SPECrate® 2017_int_base using the GCC-02 v7.2 compiler. AMD-based system scored 47.7 in tests conducted in AMD labs configured with 2 x Xeon 3106 CPU's (2 x $306 each per ark.intel.com), 768GB memory (24 x 32GB 2R DDR4 2666MHz running at 2133MHz), SLES 12 SP3 4.92-6.18 default kernel, BIOS set to default settings. SPEC and SpecCrane are registered trademarks of the Standard Performance Evaluation Corporation. See www.spec.org. NAP-65

Slide 14: AMD Internal Data

Slide 15: Source: Tencent, data not verified by AMD. Tencent Cloud Services portal

Slide 16: Source: HPE testing, not verified by AMD. Based on a comparison of the SPECvirt_sc2013 results of the ThinkSystem SR650 with 2 Intel Xeon Platinum 58164 processors versus the HPE ProLiant DL325 Gen10 with 1 AMD EPYC 7551P. SPEC and the benchmark name SPECvirt_sc2013 are registered trademarks of the Standard Performance Evaluation Corporation (SPEC). The stated results are published as of 06-15-18; see spec.org. Lenovo pricing from Lenovo site as of 05-14-18. HPE pricing is internal as of 06-05-18.

DISCLAIMER & ATTRIBUTION

The information contained herein is for informational purposes only, and is subject to change without notice. While every precaution has been taken in the preparation of this document, it may contain technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise correct this information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software or other products described herein. No license, including implied or arising by estoppel, to any intellectual property rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD’s products are as set forth in a signed agreement between the parties or in AMD's Standard Terms and Conditions of Sale.

DISCLAIMER

The information contained herein is for informational purposes only, and is subject to change without notice. While every precaution has been taken in the preparation of this document, it may contain technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise correct this information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software or other products described herein. No license, including implied or arising by estoppel, to any intellectual property rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD’s products are as set forth in a signed agreement between the parties or in AMD's Standard Terms and Conditions of Sale. Timelines, roadmaps, and/or product release dates shown in these slides are plans only and subject to change. “Vega” is a codename for an AMD architecture, and is not a product name. GD-122

ATTRIBUTION

© 2018 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, Radeon, LiquidVR, and combinations thereof are trademarks of Advanced Micro Devices, Inc. DirectX is a registered trademark of Microsoft Corporation in the US and other jurisdictions. OpenCL is a trademark of Apple Inc. used by permission by Khronos. OpenGL is a registered trademark of Silicon Graphics, Inc. used by permission by Khronos. Vulkan and the Vulkan logo are registered trademarks of Khronos Group, Inc. Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

© 2017 Ubisoft Entertainment. All Rights Reserved. Far Cry, Ubisoft and the Ubisoft logo are trademarks of Ubisoft Entertainment in the US and/or other countries. Based on Crytek original Far Cry directed by Cevat Yerli.